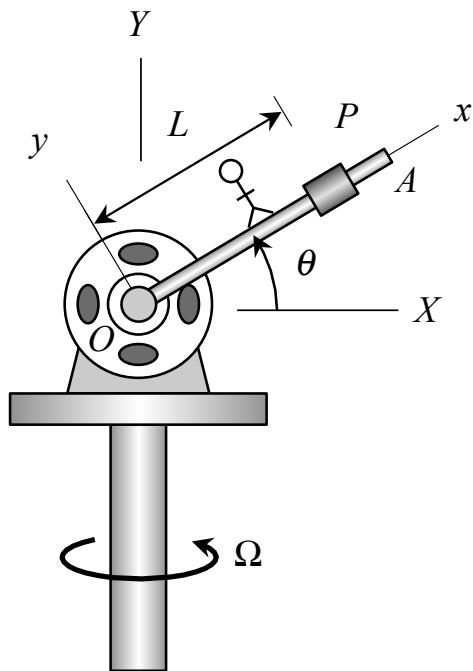


Homework H.3.J


Given: A motor is mounted on a platform, with the platform attached to the top end of a shaft that is rotating about a fixed vertical axis at a constant rate of Ω . The motor is known to be rotating at a constant rate of $\dot{\theta}$. Arm OA is attached to the output shaft of the motor, with end O located on the rotation axis of the vertical shaft, as shown in the figure. A collar P is able to slide along arm OA, with the position of P being at a distance of L from O. A set of xyz -coordinate axes are attached to OA, as shown.

Find: For this problem,

- determine the angular velocity and angular acceleration of OA.
- determine the velocity and acceleration of slider P.

Write your answers as vectors in terms of their xyz -components.

HINT: Consider using an observer attached to OA, as shown.

Use the following parameters in your analysis: $\theta = 30^\circ$, $\Omega = 4 \text{ rad/s}$, $\dot{\theta} = 3 \text{ rad/s}$, $L = 3 \text{ ft}$ and $\dot{L} = 8 \text{ ft/s}$.